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Abstract: - This paper newly  proposes the robust RLS Wi ener FIR prediction algorit hm based on th e 
innovation theory for t he linear stochastic sy stems including with param eters. In the robu st RLS Wien er 
predictor, the following information is used. (1) The system matrices for the signal an d the d egraded 
signal. (2) The observation m atrices for the signal and the degraded signal. (3) The variance of the 
state for the degraded signal. (4) The cross-variance of the state for the signal with the state. (5) The 
variance of the observation noise.  As a step to obtain the robust RLS Wiener FIR prediction algorithm, this 
paper presents the robust prediction algorithm  of t he signal using the covariance infor mation etc. In the 
predictor, the following informati on is used. (1) The observation m atrices for the signal a nd the degra ded 
signal. (2) The variance of the state for the deg raded signal. (3) The auto-covariance inform ation of the 
state for the degraded signal. (4) The cross-covarian ce information of the state for the signal with that for the 
degraded signal. (5) The variance of t he observation noise. The estimation accuracy of the proposed robust  
RLS Wiener FIR predictor is superior to the existing RLS Wiener FIR predictor.   
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1 Introduction 

Finite impulse response (FIR) filter is known in 
the areas of the digital filter and the filter for signal 
or state esti mations. Concerning the digital filter, 
Wong, et al. [1], based on stochastic com putation, 
proposes the finite im pulse response digital filter  
with an improved scaling scheme. Nazaripou ya, et 
al. [2] designs the digital FIR filter by  using the 
convex and quasi-convex optimization methods. 
The digital FIR filter has the properties of  
minimum-phase, minimum-length, lower group 
delay with f ewer design parameters and faster 
convergence in com parison with to t he existing 
design techniques. 

From the aspects of the theory and applications, 
the robust prediction and filtering techniques have 
been investigated, e.g. [3]-[5]. In [3], by 
introducing an iteratively re-weighted least-squares 
optimization criterion, the robust Kalman filter is 
designed. The robust filte r is applied t o a problem 

in vision. I n [4], three different methods are 
proposed by designing the robust Kalman filter for 
outliers in t he one-step-ahead prediction of  the 
wind speed. In [ 5], for multi-sensor systems with 
the uncertainty parameters, a new robust Kalman  
prediction technique is proposed for compensating 
parametric uncertainty by fictitious noise. The 
approach is reduced to the robust Kal man 
prediction problem for the sy stem with the 
uncertain noise variance s, and the local and 
centralized robust Kalman predictors are proposed.  

The recursive least-squares (RLS) Wiener 
estimators use the complete information of the  
state-space model but the information of the input  
matrix and the input n oise variance [6]. For the 
discrete-time stochastic systems with the uncertain 
parameters, in the estim ation of the signal, the 
robust RLS Wiener estimators [7] and the robust 
RLS Wiener finite im pulse response filter [ 6] are 
proposed. The estimation accuracy of the robust  
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RLS Wiener esti mators [7] are superior to the 
robust Kalman filter [9] and the RLS Wiener filter 
[6]. The FIR Kal man filter [10]-[14] is l ess 
sensitive to the uncertainties in the state-space 
model. In Nakam ori [8] it is shown that, as the 
finite interval increases, the mean square-value  
(MSV) of the estimation errors by  the robust RLS 
Wiener FIR filter [ 8] becomes gradually small and 
approaches that by the r obust RLS Wiener filter 
[7].  

Nakamori [15] proposes the RLS Wie ner FIR 
prediction and filtering algorithms based on the  
innovation approach in linear discrete-time 
stochastic systems. Apart from the filter and 
smoother, the predictor is useful in t he prediction 
of the air pollution levels etc. [16]. Since the robust 
RLS Wiener FIR prediction problem is not referred 
in Nakamori [8], this paper newly  proposes the 
robust RLS Wiener FIR prediction al gorithm in 
Theorem 3, based on the i nnovation theory, for the 
linear discrete-time stochastic systems with the  
uncertain parameters. It is  assumed that the signal 
process is fitted to the auto-regressive (AR) model 
of the finite order. Also , the degraded signal, 
caused by the uncertain param eters in the  
observation and system matrices, is fitted to the AR 
model of the finite order. Theorem 1 proposes the 
equation, which the o ptimal impulses response 
function satisfies, in the robust RLS FIR prediction 
problem. Theorem 3 proposes the robust RLS 
Wiener FIR prediction algorithm which uses the  
following information. (1) The sy stem matrices for 
the signal  and the degraded signal ̆ . (2) 
The observation m atrices for the signal and the  
degraded signal. (3) The variance ,  of the 
state  for the degraded signal. (4) The  
cross-variance ,  of the state  for the 
signal with the state . (5) The variance of the 
observation noise. As a step to the predictor in 
Theorem 3, Theorem  2 presents the robust RLS 
FIR prediction algorit hm of the signal. The 
predictor In Theore m 2 uses the following 
information. (1) The observation m atrices for the  
signal and th e degraded signal. (2) The variance 
of the s tate for the degraded sign al. (3) The 
auto-covariance information of the state for the 
degraded signal. (4) The cross-covarianc e 
information of the state for the signal with that for 
the degraded signal. (5) The varia nce of the  
observation noise.  

The prediction characteristics of the robust RLS 
Wiener FIR predictor are shown in comparison 
with those by  the RLS Wiener FIR predictor [15] 
and the robust RLS Wiener FIR filt er [8]. The 
estimation accuracy of the proposed r obust RLS 

Wiener FIR predictor is s uperior by far to t hat of 
the RLS Wiener FIR predictor [15].   

In this paper, the typos  in the rob ust RLS 
Wiener FIR filter [8] are also corrected.  
 
 
2 Robust least-squares FIR prediction 
problem 
Let an m-dimensional observation equation and an 
n-dimensional state equation be given by  

 

̆ ,
̆ ̄ ,

Δ ,
̄ 1 Φ ̄ Γ ,
Φ Φ ΔΦ ,

,
,

 (1)

in linear disc rete-time stochastic systems with the 
uncertain quantities Δ  and ΔΦ .  
and  are the white obs ervation and input 
noises with the variances  and  respectively. 
Their auto-covariance functions are give n in (1) by 
use of the Kronecker delta function . 
The state e quation for ̄ 1  includes the 
uncertain quantity ΔΦ  additionally to the 
system matrix Φ . Also, the  observation matrix 

 contains the uncertain quantit y Δ . 
Hence, ̆  shows the devia ted trajectory from 
the nominal trajectory of the s ignal  
generated by the precise state-space model (2). In 
(1), as the sum of the d egraded signal ̆  and 
the observation noise , the degraded observed 
value  is obtained. Compared with (1), the 
precise state-space model is given by 

 
,

,
1 Φ Γ .

 (2)

In (2),  is the signal to be esti mated.  is an 
 by  observation matrix,  is the state.  

The observation noise  and the input  noise 
 have the sa me auto-covariance functions as 

those in (1). It is assu med that the sequences of the 
signal and the observation noise are statistically  
independent and have zer o means. This paper, 
based on the  innovation approach, newly designs 
the robust RLS FIR predictor using the covariance 
information in Theorem 2 and the robust RLS 
Wiener FIR predictor in Theorem 3 for estimating 
the signal  with the degraded observed value 

. Here, both the robust predictors do not use 
any information on the uncertain quantit ies ΔΦ  
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and Δ .  

Suppose that the sequence of the degraded signal 
̆  is fitted to t he AR model of the finit e order 
 as  

 
̆ ̆ 1 ̆ 2 ⋯

̆ ̆ ,
̆ ̆ .

 
 

(3)

Let the degraded signal ̆  be represented with 
the state  by  

 

̆ ,

⋮

̆
̆ 1
⋮

̆ 2
̆ 1

,

0 0 ⋯ 0 0 .

 (4)

Henceforth, the state equation for the state  is 
expressed by  

 

1
1

⋮
1
1

0 0
0 0
⋮ ⋮ ⋮
0 0 0

⋯ 0
⋯ 0
⋱ ⋮
⋯
⋯

⋮

0
0
⋮
0

,

̆ ,
.

 (5)

Let ,  represent the 
auto-covariance function of the sta te  in 
wide-sense stationary stochastic sy stems [17]. 

,  is expressed in the sem i-degenerate kernel 

form of 

 
,

,0 ,
,0 ,

Φ , Φ , .
 (6)

Here, Φ is the sy stem matrix for the state . 
From (5), the system matrix Φ is expressed by 

 

Φ

0 0
0 0
⋮ ⋮ ⋮
0 0 0

⋯ 0
⋯ 0
⋱ ⋮
⋯
⋯

.

 (7)

By putting , ̆ ̆ , 
the auto-variance function ,  of the state  

 is expressed by  

 

,

̆
̆ 1
⋮

̆ 2
̆ 1

̆ ̆ 1 ⋯
̆ 2 ̆ 1

0 1 ⋯
1 0 ⋯
⋮ ⋮ ⋱

2 3 ⋯
1 2 ⋯

2 1
3 2

⋮ ⋮
0 1
1 0

.

 (8)

With , the Yule-Walker equation for t he 
AR parameters is formulated as  
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, ⋮

1
2
⋮

1
,

,
0 1 ⋯
1 0 ⋯
⋮ ⋮ ⋱

2 3 ⋯
1 2 ⋯

2 1
3 2

⋮ ⋮
0 1
1 0

.

 (9)

Let ,  be 
the cross-covariance function of the  state  
with the state  in wide-sense stationary 
stochastic systems. ,  is expressed in the 
functional form of 

 
, ,0 ,
Φ , Φ , .

 (10)

Here, from (2), Φ is the s ystem matrix for the 
state .  

Under the above prerequisites on the signal and 
the degraded signal, etc., Theorem 1, based on the 
innovation theory, presents the equation, which the 
optimal impulse response function satisfies, in the 
robust RLS FIR prediction problem.  
Theorem 1 Let the -step ahead FIR prediction 
estimate | 1  of the state  
be expressed by 

 

| 1

, ,

Φ 1| 1 1 ,

 (11)

in terms of the innovation process ,
1 . In (11), ,  represents the 
time-varying impulse response function and 
1| 1 1  is the FIR filtering estimate of 
the state 1 . Let the FIR fi ltering estimate 

| 1  of  be given by  

 

| 1

,  
(12)

as a linear com bination of the im pulse response 
function ,  and the i nnovation sequence 

, 1 . Then the optim al 
impulse response function ,  satisfies  

 

, Λ ,

, Λ 1,

Φ ,
, , .

(13)

In (13), ,  is equivalent to the 
cross-covariance function of the state  
with the degraded signal ̆ , , .  
Proof  
Consider the estimation problem, which minimizes 
the MSV 

 
||
| 1 ||

 (14)

of the FIR prediction errors. From  an orthogonal 
projection lemma [17] 

 , ,

1 ,

 (15)

the impulse response function ,  satisfies the 
Wiener-Hopf equation 

 , ,

1 .

 (16)

In (15), ‘ ’ denotes the notation of the  
orthogonality. Let the co variance function of t he 
innovation process be given by  

 Λ . (17)

From (16), (17) and the expression for the 
innovation process , ,  satisfies 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.13 Seiichi Nakamori

E-ISSN: 2224-2678 89 Volume 19, 2020



 

, Λ

Φ 1| 1 1

1| 1 1 Φ .

 (18)

The term  is developed as  

 
̆
̆

, .

 (19)

From (18) and (19), the o ptimal impulse response 
function ,  satisfies (13).  

(Q.E.D.)   
 

Starting with (13), the robust R LS FIR 
prediction algorithm using the  covariance 
information etc. is presented in Theore m 2. Then 
Theorem 3 proposes the robust RLS Wiener FIR 
prediction algorithm.  
 
 
3 Robust RLS FIR predictor using 
covariance information and robust 
RLS Wiener FIR predictor 
Theorem 2 proposes the robust RLS FIR prediction 
algorithm using the covariance inform ation 

,  of the state  for the degraded signal 
̆  and the cross-covariance information 

,  of the state  for the signal  
with the state  for the degraded signal ̆ , 
etc.  
Theorem 2 Let the s tate equation and the  
observation equation, which contains t he uncertain 
quantities ΔΦ and Δ  respectively, be given by 
(1). Let  represent the observation matrix for the 
signal . Let Φ and  represent the s ystem 
and observation m atrices respectively for the 
degraded signal ̆ , fitted t o the AR m odel (3). 
Let the variance ,  of the state  for the 
degraded signal ̆  be given. Let the 
auto-covariance function ,  of  be 
expressed by (6) in ter ms of  and . Let 
the cross-covariance function ,  of  
with  be given by (10) in terms of  and 

. Let the variance of the white observation 
noise  be . Then the robust RLS estimation 
algorithm for the -step ahead FIR prediction 
estimate ̂ | 1  of the signal 

 consists of (20)-(40)  in linear dis crete-time 
stochastic systems.  
-step ahead FIR prediction estimate of the signal 

: ̂ | 1   

 
̂ | 1

| 1  (20)

-step ahead FIR prediction esti mate of the state  
: | 1  

 | 1
 (21)

FIR filtering estimate of the signal : ̂ |
1   

 ̂ | 1 |
1  (22)

FIR filtering esti mate of the state : |
1  

 | 1  (23)

Initial condition of | 1  at : 
|1   

FIR filtering estimate of the state : |
1  

 | 1  (24)

Initial condition of | 1  at : 
|1   

Recursive equation for : 

 

1
1

1

 (25)

Initial condition of  at :   
Recursive equation for : 

 

1
1

1

 (26)

Initial condition of  at :   
Equation for : 

 
1 1 Φ Λ

(27)

 

 
1 Λ

Λ
 (28)

Equation for : 
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1 Φ Λ

 (29)

Recursive equation for : 

 
1

Λ
Λ

 (30)

Initial condition of  at :   
Equation for Λ : 

 
Λ ,

1
 (31)

Initial condition of FIR filtering estimate |
1  of  at : |1   

 |1  (32)

Recursive equation for :  

 
1
1 ,

0 0
 (33)

Equation for : 

 1 1 1

Λ

 (34)

Recursive equation for :  

 1 Λ ,
0 0

 (35)

Initial condition of FIR filtering estimate |
1  of : at : |1  

 |1  (36)

Recursive equation for :  

 
1

1 ,
0 0

 (37)

Equation for : 

 
1 Λ

 (38)

Recursive equation for :  

 
1

Λ ,
0 0

 (39)

Equation for Λ : 

 Λ ,
1

 (40)

Proof of Theorem 2 is deferred to Appendix A.  
Based on t he robust RLS FIR prediction 

algorithm in Theorem 2, Theorem 3 presents the  
robust RLS Wiener FIR prediction algorithm.  
Theorem 3 Let the state and the  observation 
equations, including the uncertain quantities ΔΦ 
and Δ  be given by (1). Let  Φ and  represent 
the system and observation m atrices respectively 
for the signal . Let Φ and  represent the 
system and observation matrices respectively for 
the degraded signal ̆ , which is fitted to the AR 
model (3). L et the variance ,  of the state  

 for the degraded signal ̆  and the 
cross-variance ,  of the state  for the 
signal  with the state  be given. Let the 
variance of t he white obs ervation noise  be 

. Then the  robust RL S Wiener estim ation 
algorithm for the -step ahead FIR prediction 
estimate ̂ | 1  of the signal 

 consists of (41)-(57)  in linear dis crete-time 
stochastic systems.  
-step ahead FIR prediction estimate of the signal 

: ̂ | 1   

 
̂ | 1

| 1  (41)

-step ahead FIR prediction esti mate of the state  
: | 1  

 
| 1

Φ | 1
 (42)

FIR filtering estimate of the signal : ̂ |
1   

 ̂ | 1 |
1  (43)

FIR filtering esti mate of the state : |
1  

 

| 1
Φ 1| 1 1

Φ 1| 1 1
Φ Φ

1| 1 1

(44)

Initial condition of | 1  at : 
|1   

FIR filtering estimate of the state : |
1   
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| 1
Φ 1| 1 1

Φ 1| 1 1
Φ Φ

1| 1 1

(45)

Initial condition of | 1  at : 
|1   

FIR filter gain for | 1 :  

 
,

Φ 1 Φ Λ
 (46)

FIR filter gain for | 1 :  

 
,

Φ 1 Φ Λ
 (47)

Equation for Λ : 

 
Λ ,

Φ 1 Φ
 (48)

Recursive equation for :  

 

Φ 1 Φ
Λ

Φ Λ
Φ

 (49)

Initial condition of  at :   
Recursive equation for :  

 

Φ 1 Φ
Λ

Φ Λ
Φ

 (50)

Initial condition of  at :   
Recursive equation for |1 : 

 
|1 Φ 1|1

Φ 1|1 ,
0|1 0

 (51)

Filter gain for |1  in (51):   

 
,

Φ 1 Φ Λ ,
, ,

 (52)

Recursive equation for |1 : 

 
|1 Φ 1|1

Φ 1|1 ,
0|1 0

 (53)

Filter gain for |1  in (53):  

 
,

Φ 1 Φ Λ
 (54)

Equation for Λ : 

 
Λ ,

Φ 1 Φ
 (55)

Recursive equation for :  

 
Φ 1 Φ

Λ ,

0 0

 (56)

Recursive equation for : 

 
Φ 1 Φ

Λ ,

0 0

 (57)

Proof of Theorem 3 is deferred to Appendix B.  
Necessary conditions on the stabilit y of the 

robust RLS Wiener FIR prediction and filtering 
algorithms are as follows.  
(1) All the real parts in the eigenvalues of the 
matrix Φ are negative.  
(2) All the real parts in the eigenvalues of the 
matrix Φ Φ are negative.  
(3) , Φ 1 Φ 0  
(4) All the real parts in the eigenvalues of the 
matrix Φ Φ are negative.  
(5) , Φ 1 Φ 0  

Section 4 proposes the re cursive algorithm for 
the prediction error variance function of the robust 
RLS Wiener FIR predictor presented in Theorem 3. 
Also, the existence of the robust  RLS Wiener FIR 
prediction estimate ̂ | 1  of the 
signal  is shown.  
 
 
4 Prediction error variance function 
of signal 
Let the variance function of t he FIR prediction 
error ̂ | 1 	be denoted by 

. Let the auto-covariance functi on 
,  of the state  be expressed by 

 

,
,0 ,
,0 ,
Φ ,

Φ , .

 (58)
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From (16) and (A.10) , the FIR pred iction error 
variance function  is formulated as 

 

,
| 1
| 1

,
| 1

,
Φ Φ ,

Λ .

 (59)

 is calculated recursively by  

 
Λ

Λ ,
0 0.

 (60)

Hence, the RLS Wiener FIR predic tion error 
variance function  is calculated by  (27) 
∼ (31), (59) and (60) recursively. Since  
is positive-semidefinite, the RLS Wiener FIR 
prediction variance of  the signal , 

| 1 | 1 , 
is upper bo unded by ,  and lower 
bounded by the zero matrix as 

 

0
| 1
| 1

, .

 (61)

This validates the existence of the robust RLS  
Wiener FIR prediction esti mate ̂ |
1  of the signal .  
 
 
5 A numerical simulation example 
Let a scalar observation equation fo r the signal 

 and the state equation for  be described 
by  

 

,
,

1 0 ,

,

1 Φ Γ ,

Φ
0 1

,

0.1, 0.8,

Γ 0
1
,

,
,

0. 5 .

 (62)

From (2) it is noted that the signal  is 
generated by the second-orde r AR model. Let us 
consider to calculate the -step ahead prediction 
estimate of the signal  with the degraded 
observed value , which i s generated b y the 
state-space model (63) including the uncertain 
quantities Δ  and ΔΦ .  

 

̆ ,
̆ ̄ ,

̄
̄
̄ ,

Δ
1 Δ 0 ,

Δ Δ 0 ,
Δ 0.1,
̄ 1 Φ ̄ Γ ,
Φ Φ ΔΦ ,

ΔΦ
0 0

Δ Δ ,

Δ 0.01, Δ 0.1

 (63)

Without any usages of a priori inf ormation of 
Δ  and ΔΦ , the robust RLS Wiener FIR 
predictor calculates the prediction estimate of the  
signal recursively. The degraded signal ̆  is 
fitted to the AR model of the -th order.  

 

̆ ̆ 1 ̆ 2
⋯ ̆ ̆ ,
10
̆ ̆ .

(64)

From (4) an d (64), ̆  is expressed with the 1 
by  observation vector  as 

 ̆ ,
1 0 0 ⋯ 0 0 .

 (65)

In the sim ulation example, the state e quation for 
 in (5) corresponds to the case of 1. 
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,  represents the auto-covariance 
function of the state  in wide-sense stationary 
stochastic systems. ,  is expressed in the 
semi-degenerate kernel form  (6). Φ  in (6) 
represents the sy stem matrix for the state . 
Also, from the auto-covariance functi on 

̆ ̆  of the degraded  
signal ̆ , the auto-variance function ,  of 
the state  is expressed as 

 

,

̆
̆ 1
⋮

̆ 2
̆ 1

̆ ̆ 1 ⋯
̆ 2 ̆ 1

0 1 ⋯
1 0 ⋯
⋮ ⋮ ⋱

2 3 ⋯
1 2 ⋯

2 1
3 2

⋮ ⋮
0 1
1 0

.

 (66)

Let , ̆  represent the 
cross-covariance function of the signal  with 
the degraded signal ̆ . From (4) and (65), the 
cross-covariance function ,  is expressed 
as  

 

, Φ , ,
0 ,

,
,
1,

, 1 ⋯
1, ⋯
, 2
1, 2
, 1
1, 1 .

 (67)

The AR param eters , , ⋯ , ,  in (64) 
are calculated by the Yule-Walker equation 

 

, ⋮

1
2
⋮

1
.

 (68)

By substituting , , Φ , Φ , , , 
, ,  and  into the robust RLS 

Wiener FIR prediction algorithm of Theorem 3, the 
prediction estimates are calculated recursively. In 
evaluating Φ  in (7), ,  in (66) and 

,  in (67), the 2,000 number of signal an d 
degraded signal data are used.  

 
Fig.1 Signal ( )z k l  and robust RLS Wiener FIR prediction estimate ˆ( | 1)z k l k L   , 

200L  , 3l   vs. k  for white Gaussian observation noise 2(0,0.3 ).N  
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Fig.2 MSVs of one-step ahead prediction errors ˆ( 1) ( 1| 1)z k z k k L      by robust RLS 
Wiener FIR predictor in Theorem 3 vs. finite interval L , 50 500L  , and MSVs of filtering 
errors ˆ( ) ( |1)z k z k , 1 k L  , by robust RLS Wiener FIR filter [8] vs. L , 50 500L  , 

for white Gaussian observation noises N(0,0.1²), N(0,0.3²), N(0,0.5²) and N(0,0.7²). 
 
 
 

 
Fig.3 MSVs of robust RLS Wiener prediction errors ˆ( ) ( | 1)z k l z k l k L      vs. finite 

interval L , in the cases of 3l   and 5l  , for white Gaussian observation noises 
2(0,0.1 )N , 2(0,0.3 )N , 2(0,0.5 )N  and 2(0,0.7 )N . 
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Fig.4 MSVs of prediction errors ˆ( ) ( | 1)z k l z k l k L      by RLS Wiener FIR predictor 

[15] vs. finite interval L , in the cases of 1l   and 3l  , for white Gaussian observation 
noises 2(0,0.1 )N , 2(0,0.3 )N , 2(0,0.5 )N  and 2(0,0.7 )N . 

 
 

Fig.1 illustrates the signal  and 
the robust RLS Wiener FIR predic tion 
estimate ̂ | 1 , 200 , 

3 vs. , 1 500, for the white 
Gaussian observation noise 0,0. 3 . 
Fig.2 shows the MSVs of the one-step 
ahead prediction errors  1 ̂
1| 1  of the sign al by the ro bust 
RLS Wiener FIR predictor in Theorem  3 vs. 
the finite int erval , 50 500, and 
the MSVs of the filtering errors 
̂ |1 , 1 , by the robust RLS 

Wiener FIR filter [8] vs. , 50 500, 
for the white  Gaussian observation noises  
0,0. 1 , 0,0. 3 , 0,0. 5  and 
0,0. 7 . As the variance of the  

observation noise becomes large,  the 
estimation accuracies of  the robust RLS 
Wiener FIR predictor and the robust RLS 
Wiener FIR filter beco me degraded 
respectively. For each observation noise 
variance, the estimation accuracy of the 
robust RLS Wiener FIR filter is superi or to 
that of the robust RLS Wiener FIR 

predictor. For 50 200 , as  
becomes large, the MSVs of the robust RLS 
Wiener FIR prediction and filtering errors  
become small steeply. At 500,  the 
MSVs of the robust R LS Wiener FIR 
prediction and filtering errors attain the 
smallest values for each observation noise. 
Fig.3 shows the MSVs of the prediction 
errors ̂ | 1  of 
the signal by the robust RLS Wiener FIR 
predictor vs. the finite i nterval , 50

500, in the case s of 3 and 5, 
for the white  Gaussian observation noises  
0,0. 1 , 0,0. 3 , 0,0. 5  and 
0,0. 7 . The MSV of the pre diction 

errors for 3 is smaller than that for  
5  for each observation noise. For 

50 200 , as  becomes large, the  
MSVs of t he prediction errors be come 
small steeply. Fig.4 shows the MSVs of the 
prediction errors ̂ |

1  of the signal by  the RLS Wiener 
FIR predictor [15] vs. the finite interval , 
50 500, in the case s of 1 and 
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3, for the white Gaus sian observation 
noises 0,0. 1 , 0,0. 3 , 0,0. 5  
and 0,0. 7 . From Fig.2-Fig. 4, the 
MSVs of the estimation errors by the robust 
RLS Wiener FIR predict or, for 1 and 

3, are smaller than those by the  RLS 
Wiener FIR predictor [15]. Her e, the MSV 
of the FIR prediction errors is evaluated b y 
∑ ̂ |
1 /1001.  
 
 
6 Conclusions 
This paper has newly  proposed the robust  
RLS Wiener FIR prediction algorithm  in 
Theorem 3, based on the innovation theory, 
for the linear discr ete-time stochastic 
systems with the uncertain parameters. As a 
step to Theore m 3, Theorem 2 has 
presented the robust prediction algorithm of 
the signal using the covariance infor mation 
etc. Also, in section 4, the recurs ive 
algorithm for the prediction error variance 
function has been proposed.  

The prediction character istics of th e 
robust RLS Wiener FIR predictor have 
been shown in section 5. The esti mation 
accuracy of the propos ed robust RLS 
Wiener FIR predictor is by  far superior to 
that of the RLS Wiener FIR predictor, but is 
inferior to that of the robust RLS Wiener 
FIR filter.  
 
 
Appendix A: Proof of Theorem 
2 
By introducing an equation 

 

Λ

Λ 1,

Φ ,

 (A.1)

from (13) and (A.1), the optimal impulse 
response function ,  satisfies 
 , . (A.2)

Likewise ,  in (18), it is seen that  
,  satisfies 

, Λ

Φ 1| 1 1

, Φ

, Λ 1,

Φ .

 (A.3)

By introducing 

 

Λ

Λ 1,

Φ ,

 (A.4)

,  satisfies 

 , . (A.5)

By substituting (A.5) i nto (A.1), and 
introducing 

 
Λ , (A.6)

 

 
Λ

1 1 Φ
 (A.7)

is obtained. Subtracting 1  from 
, we get 

 
1 Λ

Λ ,
0 0.

 (A.8)

Substituting (A.2) into (11) and introducing 
, given by 

 , (A.9)

we obtain 

 

| 1

,

.

 (A.10)

By subtracting 1  from , it 
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follows that 
1

Φ 1| 1 1

Φ
1| 1 1 .

 (A.11)

Let the FIR filtering esti mate |
1  of  be given by 

 

| 1

, ,

Φ 1| 1 1 .

 (A.12)

Also, by introducing 

 
Λ , (A.13)

(A.4) is rewritten as 

 
Λ

1 Φ .
 (A.14)

Subtracting 1  from , we 
have 

 
1

Λ
Λ .

 (A.15)

By introducing  

 , (A.16)

from (A.5), the FIR f iltering estimate 
| 1  of  is given by 

 | 1
. (A.17)

By subtracting 1  from , it 
follows that 

1
1

1 ,
1

Φ 1| 1 1 ,
1

Φ
1| 1 1 .

 (A.18)

From (A.13), (A.16) and (A.17),  the 
variance Λ  of the innovation process 

 is expressed by 

Λ

Φ 1| 1 1

Φ 1| 1 1
,

Φ 1| 1 1
1| 1 1 Φ

,
1 .

 (A.19)

Let the initial condition of the FIR filtering 
estimate of  at  be |1 . 

 |1 , ,

Φ 1|1

 (A.20)

Let the variance of the in novation process 
 be Λ . 

 

Λ
Φ 1|1

Φ 1|1
,

Φ 1|1
1|1 Φ

,
1

 (A.21)

Here,  

 Λ . (A.22)

Let the initial condition of the FIR filtering 
estimate of  at  be |1 . 
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 |1 , ,

Φ 1|1

 (A.23)

Here, ,  satisfies 

 

, Λ ,

, Λ 1,

Φ .

 (A.24)

,  in (A.20) satisfies 

, Λ ,

, Λ 1, Φ ,

, , .

 

 
 
(A-25) (A.25)

By introducing 

 
Λ

Λ 1, Φ ,
 (A.26)

,  is given by 

 , . (A.27)

By introducing 

 Λ , (A.28)

(A.26) is rewritten as 

 
Λ

1 1 Φ ,
Φ 1 .

 (A.29)

By substituting (A.27) i nto (A.20) and 
introducing 

 , (A.30)

 
 |1  (A.31)

is obtained, Subtracting 1  from 
, we obtain 

1 Λ ,
0 0.

 (A.32)

By subtracting 1  from , it 

follows that 

 
1

Φ 1|1 ,
0 0.

 (A.33)

By introducing 

Λ

Λ 1, Φ ,
 (A.34)

,  is given by 

 , . (A.35)

From (A.22), 

 
Λ

1
 (A.36)

is obtained. Subtracting  1  from 
, we obtain 

 
1

Λ ,
0 0.

 (A.37)

By substituting (A.35) i nto (A.23) and 
introducing 

 , (A.38)

 
 |1  (A.39)

is obtained. Subtracting 1  from 
, we obtain 

 

1

1 ,
1 Φ 1|1 ,

0 0.

 (A.40)

 
(Q.E.D.)   

 
Appendix B: Proof of Theorem 
3 
By substituting (A.11) i nto (A.10) and 
introducing 

 , (B.1)
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(42) and (44) are clear.  By substituting 
(A.18) into (A.17) and introducing 

 , (B.2)

(45) is obtained. By substituting (A.7) into 
(B.1), using (10) and introducing 

 , (B.3)

(46) is obtained. By substituting (A.14) into 
(B.2), using (6) and introducing 

 , (B.4)

(47) is obtained. From (A-19) and (B.4), by 
using Φ , (48) is obtained . By 
substituting (A.8) into (B.3) and using (B.1) 
with Φ  and Φ , (49) is  
obtained. By substituting (A.15) into (B.4) 
and using (B.2) with Φ , (50) is  
obtained.  

By substituting (A.33) i nto (A.31) an d 
introducing  

 , (B.5)

(51) is obtained. By substituting (A.29) into 
(B.5) and introducing 

 , (B.6)

(52) is obtained. By substituting (A.40) into 
(A.39) and introducing 

 , (B.7)

(53) is obtained. By substituting (A.36) into 
(B.7) and introducing 

 , (B.8)

(54) is obtained. From  (A.21) and (B.8),  
(55) is obtained. By substituting (A.32) into 
(B.6), (56) is obtained. By  substituting 
(A.37) into (B.8), (57) is obtained.  

(Q.E.D.)   
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